Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244545

RESUMO

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma , Cognição , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
2.
Brain Behav Immun ; 115: 26-37, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748567

RESUMO

Recent studies have reported a negative association between exposure to childhood trauma, including physical neglect, and cognitive functioning in patients with schizophrenia. Childhood trauma has been found to influence immune functioning, which may contribute to the risk of schizophrenia and cognitive symptoms of the disorder. In this study, we aimed to test the hypothesis that physical neglect is associated with cognitive ability, and that this association is mediated by a combined latent measure of inflammatory response, and moderated by higher genetic risk for schizophrenia. The study included 279 Irish participants, comprising 102 patients and 177 healthy participants. Structural equation modelling was used to perform mediation and moderation analyses. Inflammatory response was measured via basal plasma levels of IL-6, TNF-α, and CRP, and cognitive performance was assessed across three domains: full-scale IQ, logical memory, and the emotion recognition task. Genetic variation for schizophrenia was estimated using a genome-wide polygenic score based on genome-wide association study summary statistics. The results showed that inflammatory response mediated the association between physical neglect and all measures of cognitive functioning, and explained considerably more variance than any of the inflammatory markers alone. Furthermore, genetic risk for schizophrenia was observed to moderate the direct pathway between physical neglect and measures of non-social cognitive functioning in both patient and healthy participants. However, genetic risk did not moderate the mediated pathway associated with inflammatory response. Therefore, we conclude that the mediating role of inflammatory response and the moderating role of higher genetic risk may independently influence the association between adverse early life experiences and cognitive function in patients and healthy participants.


Assuntos
Experiências Adversas da Infância , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla , Voluntários Saudáveis , Cognição/fisiologia
3.
PLoS One ; 18(12): e0295855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127959

RESUMO

Early life stress (ELS) can impact brain development and is a risk factor for neurodevelopmental disorders such as schizophrenia. Post-weaning social isolation (SI) is used to model ELS in animals, using isolation stress to disrupt a normal developmental trajectory. We aimed to investigate how SI affects the expression of genes in mouse hippocampus and to investigate how these changes related to the genetic basis of neurodevelopmental phenotypes. BL/6J mice were exposed to post-weaning SI (PD21-25) or treated as group-housed controls (n = 7-8 per group). RNA sequencing was performed on tissue samples from the hippocampus of adult male and female mice. Four hundred and 1,215 differentially-expressed genes (DEGs) at a false discovery rate of < 0.05 were detected between SI and control samples for males and females respectively. DEGS for both males and females were significantly overrepresented in gene ontologies related to synaptic structure and function, especially the post-synapse. DEGs were enriched for common variant (SNP) heritability in humans that contributes to risk of neuropsychiatric disorders (schizophrenia, bipolar disorder) and to cognitive function. DEGs were also enriched for genes harbouring rare de novo variants that contribute to autism spectrum disorder and other developmental disorders. Finally, cell type analysis revealed populations of hippocampal astrocytes that were enriched for DEGs, indicating effects in these cell types as well as neurons. Overall, these data suggest a convergence between genes dysregulated by the SI stressor in the mouse and genes associated with neurodevelopmental disorders and cognitive phenotypes in humans.


Assuntos
Transtorno do Espectro Autista , Adulto , Humanos , Masculino , Animais , Camundongos , Feminino , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Isolamento Social , Sinapses , Fenótipo , Fatores de Risco , Genética Humana
4.
Genes (Basel) ; 14(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36833409

RESUMO

Sortilin-related vacuolar protein sorting 10 (VPS10) domain containing receptor 3 (SORCS3) is a neuron-specific transmembrane protein involved in the trafficking of proteins between intracellular vesicles and the plasma membrane. Genetic variation at SORCS3 is associated with multiple neuropsychiatric disorders and behavioural phenotypes. Here, we undertake a systematic search of published genome-wide association studies to identify and catalogue associations between SORCS3 and brain-related disorders and traits. We also generate a SORCS3 gene-set based on protein-protein interactions and investigate the contribution of this gene-set to the heritability of these phenotypes and its overlap with synaptic biology. Analysis of association signals at SORSC3 showed individual SNPs to be associated with multiple neuropsychiatric and neurodevelopmental brain-related disorders and traits that have an impact on the experience of feeling, emotion or mood or cognitive function, while multiple LD-independent SNPs were associated with the same phenotypes. Across these SNPs, alleles associated with the more favourable outcomes for each phenotype (e.g., decreased risk of neuropsychiatric illness) were associated with increased expression of the SORCS3 gene. The SORCS3 gene-set was enriched for heritability contributing to schizophrenia (SCZ), bipolar disorder (BPD), intelligence (IQ) and education attainment (EA). Eleven genes from the SORCS3 gene-set were associated with more than one of these phenotypes at the genome-wide level, with RBFOX1 associated with SCZ, IQ and EA. Functional annotation revealed that the SORCS3 gene-set is enriched for multiple ontologies related to the structure and function of synapses. Overall, we find many independent association signals at SORCS3 with brain-related disorders and traits, with the effect possibly mediated by reduced gene expression, resulting in a negative impact on synaptic function.


Assuntos
Encefalopatias , Estudo de Associação Genômica Ampla , Proteínas do Tecido Nervoso , Receptores de Superfície Celular , Humanos , Encéfalo/metabolismo , Encefalopatias/metabolismo , Proteínas do Tecido Nervoso/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética
5.
Behav Brain Res ; 430: 113930, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35609792

RESUMO

Evidence suggests that early life adversity, such as maternal immune activation (MIA), can alter brain development in the offspring and confer increased risk for psychopathology and psychiatric illness in later life. In this study, the long-term effects of MIA, post-weaning social isolation, and the combination were assessed on behavioural and immunological profiles in adult male and female offspring. On gestation day 12.5, pregnant mice were weighed and injected with either polyinosinic:polycytidylic acid (5 mg/kg) or saline and cytokines levels were assayed 3 hrs later to confirm immune activation. The behaviour and immunological profiles of male and female offspring were examined in adolescence (P34-36), and adulthood (P55-80). MIA induced an increase in the pro-inflammatory cytokine IL-6 in pregnant dams three hours after administration (p < 0.001) that correlated with a decrease in body temperature (p < 0.05). The effect of MIA on the immunological phenotype of the offspring was evident in adolescence, but not in adulthood. MIA selectively induced hypoactivity in adolescent males, a phenotype that persisted until adulthood, but had no effect on cognition in males or females. In contrast, social isolation stress from adolescence resulted in impaired sociability (p < 0.05) and increased anxiety (p < 0.05) particularly in adult females. There was no synergistic effect of the dual-hit on immune parameters, sociability, anxiety or cognitive behaviours. Given the negative impact and sex-dependent effects of SI stress on locomotor and anxiety-like behaviour, future investigations should examine whether the health risks of social isolation, such as that experience during the COVID-19 pandemic, are mediated through increased anxiety.


Assuntos
COVID-19 , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Adolescente , Adulto , Animais , Comportamento Animal/fisiologia , Citocinas/farmacologia , Modelos Animais de Doenças , Endofenótipos , Feminino , Humanos , Masculino , Camundongos , Pandemias , Poli I-C/farmacologia , Gravidez , Isolamento Social , Desmame
6.
Genes (Basel) ; 12(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573345

RESUMO

Maternal immune activation (MIA) is a known risk factor for schizophrenia (SCZ) and autism spectrum disorder (ASD) and is often modelled in animal studies in order to study the effect of prenatal infection on brain function including behaviour and gene expression. Although the effect of MIA on gene expression are highly heterogeneous, combining data from multiple gene expression studies in a robust method may shed light on the true underlying biological effects caused by MIA and this could inform studies of SCZ and ASD. This study combined four RNA-seq and microarray datasets in an overlap analysis and ranked meta-analysis in order to investigate genes, pathways and cell types dysregulated in the MIA mouse models. Genes linked to SCZ and ASD and crucial in neurodevelopmental processes including neural tube folding, regulation of cellular stress and neuronal/glial cell differentiation were among the most consistently dysregulated in these ranked analyses. Gene ontologies including K+ ion channel function, neuron and glial cell differentiation, synaptic structure, axonal outgrowth, cilia function and lipid metabolism were also strongly implicated. Single-cell analysis identified excitatory and inhibitory cell types in the cortex, hippocampus and striatum that may be affected by MIA and are also enriched for genes associated with SCZ, ASD and cognitive phenotypes. This points to the cellular location of molecular mechanisms that may be consistent between the MIA model and neurodevelopmental disease, improving our understanding of its utility to study prenatal infection as an environmental stressor.


Assuntos
Encéfalo/fisiologia , Expressão Gênica , Transtornos do Neurodesenvolvimento/etiologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/patologia , Poli I-C/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética
7.
EMBO J ; 40(3): e103701, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319920

RESUMO

SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.


Assuntos
Redes Reguladoras de Genes , Hipocampo/citologia , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Esquizofrenia/genética , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Núcleo Celular/metabolismo , Plasticidade Celular , Células Cultivadas , Cognição , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Esquizofrenia/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...